Air Systems Panel Session

Dr. Ashish Bagai (Lead)

Mr. Bob Arbach

Mr. Mark Gustafson

Mr. Stephen Waller

TTO Office Wide BAA Proposers' Day

April 23, 2013

Air Systems legacy programs

Air Systems current programs

Hypersonic Technologies

Develop and demonstrate technologies that enable long-range, high-performance maneuvering hypersonic flight; explore vehicle concepts for tactical-range hypersonic cruise missiles and hypersonic boost glide vehicles

Triple Target Terminator (T3)

Range performance and target flexibility for anti-aircraft, anti-cruise missiles, and anti-surface to air radar

Air Systems current programs (cont.)

Mission Adaptive Rotor (MAR)

Artist's Concepts

Foundational technologies to enable enhanced rotary-wing and VTOL performance capabilities

Transformer (TX)

Vertical Take-off and Landing (VTOL) X-Plane

Transformational vertical flight capabilities applicable to light-medium class aircraft

Modular, versatile, unmanned airlift capability via interchangeable, multi-mission payloads

DARPA Air Systems description

Objective: Control the air and strike anytime/anywhere

Today's Environment

- Configuration innovations have slowed down
- Lifecycle costs continue to increase
- Performance capabilities have saturated:
 - Human in-the-loop control still necessary
 - Weapon/payload delivery is limited and expensive
 - Propulsion approaches are too homogenous
- Concepts of employment and operations have remained virtually unchanged

Technical Goals

- Experimental aircraft (X-Planes) demonstrate technologies at relevant scales
- Advanced manufacturing and improved reliability
- Expand performance envelope endurance, speed, range, payload, survivability:
 - Autonomy
 - High-speed, low-cost precision strike
 - Novel propulsion hybridization, distribution
- Improved capabilities to enable improved and new missions

Air Systems summary

Technical goals for hypersonic platforms

- High-performance, robust hypersonic vehicle designs with large operational envelopes
- Lightweight, high-strength hypersonic airframe structures for expendable and reusable vehicles
- Novel materials and design approaches for active and passive thermal protection, able to accommodate high heating for short durations and moderate heating for long durations
- Manufacturing technologies enabling new/novel aerospace materials and agile design for hypersonic vehicle structures, e.g. additive manufacturing
- Adaptive reconfigurable control, real-time trajectory optimization, robust energy management
- Propulsion systems: Scramjets, combined cycle

Technical goals for all novel air vehicles

- Specific technologies to support extreme-range, high-speed, low-cost, long-endurance operations
- New control laws, maneuver and control techniques
- Hybrid and/or distributed propulsion systems
- Flow control, drag reduction
- Multifunctional subsystems
- Advanced test and simulation
- Nontraditional weapon concepts

